1. Introduction
  2. Zero
  3. Zero
  4. Part I
  5. Chapter 1 - Making sense of AI
    1. Reality
    2. Randomness
    3. Fooled by AI
    4. Vibe Coding
    5. AI Input
    6. Mirror on Asteroids
  6. Chapter 2 - Traditional AI
    1. What is Traditional AI?
    2. Regression
    3. Classification
    4. Clustering
    5. Dimensionality Reduction
    6. Reinforcement Learning
  7. Chapter 3 - Generative AI
    1. What is Generative AI?
    2. Transformers
    3. Large Language Models (LLMs)
    4. Embeddings
    5. Text Generation
    6. Vector Databases
    7. RAG
    8. Sound Generation
    9. Image Generation
    10. Video Generation
    11. Fine Tuning
  8. Part II
  9. Chapter 4 - Agents
    1. What are Agents?
    2. Context Window
    3. llms.txt & llms-full.txt
    4. Coding Agents
    5. Agent Patterns
    6. MCP
    7. Other Approaches
    8. Context 7
    9. Security and Agents/MCP
    10. Popular Agents
  10. Chapter 5 - Claude Code
    1. What is Claude Code?
    2. Prompt Library
    3. Prompt Advices
    4. Commands
    5. Bash Mode
    6. Exclusions
    7. Advanced Context Window Management
    8. ultrathink
    9. Custom Commands
    10. Custom Agents
    11. Hooks
    12. MCP and Claude Code
    13. Decision Criteria
  11. Chapter 6 - Testing with AI
    1. Why use AI for Testing?
    2. AI to Help with Testing
    3. Manual Testing
    4. Data Generation
    5. Stress Testing
  12. Part III
  13. Chapter 7 - Migrations with AI
    1. Why use AI for Migrations?
    2. Inventory
    3. Migrations in Phases
    4. Testing
    5. Sunsetting
    6. After Migrations
  14. Chapter 8 - Non-Obvious Use Cases
    1. Proof Reader
    2. Troubleshooting
    3. Documentation
    4. Onboarding
    5. Ownership
  15. Chapter 9 - Learning from AI
    1. Ideas
    2. Proof of Concepts (Poc)
    3. Role Playing
    4. Sentiment Analysis
    5. Critical Thinking
    6. Private Teacher
  16. Epilogue
  17. Epilogue
    1. How I wrote the book
    2. References
    3. Changelog
    4. Glossary
    5. Book Index