- Introduction
- Zero
- 1. Zero
- Part I
- 2. Chapter 1 - Making sense of AI
- 2.1. Reality
- 2.2. Randomness
- 2.3. Fooled by AI
- 2.4. Vibe Coding
- 2.5. AI Input
- 2.6. Mirror on Asteroids
- 3. Chapter 2 - Traditional AI
- 3.1. What is Traditional AI?
- 3.2. Regression
- 3.3. Classification
- 3.4. Clustering
- 3.5. Dimensionality Reduction
- 3.6. Reinforcement Learning
- 4. Chapter 3 - Generative AI
- 4.1. What is Generative AI?
- 4.2. Transformers
- 4.3. Large Language Models (LLMs)
- 4.4. Embeddings
- 4.5. Text Generation
- 4.6. Vector Databases
- 4.7. RAG
- 4.8. Sound Generation
- 4.9. Image Generation
- 4.10. Video Generation
- 4.11. Fine Tuning
- Part II
- 5. Chapter 4 - Agents
- 5.1. What are Agents?
- 5.2. Context Window
- 5.3. llms.txt & llms-full.txt
- 5.4. Coding Agents
- 5.5. Agent Patterns
- 5.6. MCP
- 5.7. Other Approaches
- 5.8. Context 7
- 5.9. Security and Agents/MCP
- 5.10. Popular Agents
- 6. Chapter 5 - Claude Code
- 6.1. What is Claude Code?
- 6.2. Prompt Library
- 6.3. Prompt Advices
- 6.4. Commands
- 6.5. Bash Mode
- 6.6. Exclusions
- 6.7. Advanced Context Window Management
- 6.8. ultrathink
- 6.9. Custom Commands
- 6.10. Custom Agents
- 6.11. Hooks
- 6.12. MCP and Claude Code
- 6.13. Decision Criteria
- 7. Chapter 6 - Testing with AI
- 7.1. Why use AI for Testing?
- 7.2. AI to Help with Testing
- 7.3. Manual Testing
- 7.4. Data Generation
- 7.5. Stress Testing
- Part III
- 8. Chapter 7 - Migrations with AI
- 8.1. Why use AI for Migrations?
- 8.2. Inventory
- 8.3. Migrations in Phases
- 8.4. Testing
- 8.5. Sunsetting
- 8.6. After Migrations
- 9. Chapter 8 - Non-Obvious Use Cases
- 9.1. Proof Reader
- 9.2. Troubleshooting
- 9.3. Documentation
- 9.4. Onboarding
- 9.5. Ownership
- 10. Chapter 9 - Learning from AI
- 10.1. Ideas
- 10.2. Proof of Concepts (Poc)
- 10.3. Role Playing
- 10.4. Sentiment Analysis
- 10.5. Critical Thinking
- 10.6. Private Teacher
- Epilogue
- 11. Epilogue
- 11.1. How I wrote the book
- 11.2. References
- 11.3. Changelog
- 11.4. Glossary
- 11.5. Book Index